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TURBULENT BOUNDARY LAYER ON THE ROTATING END OF A SWIRL CHAMBER 

E. P. Volchkov, S. V. Semenov, 
and V. I. Terekhov 

UDC 532.59.001.572 

Aerodynamics and heat transfer in the neighborhood of a rotating disk have been studied 
by many investigators. A survey of such works can be found in [i], for example. Most of 
these studies examined the cases of rotation of a disk located in a free volume or exposed 
to an axial flow [1-3], as well as the interaction of a twisted flow with a stationary surface 
(a bibliography on this subject can be found in [4]). 

Information on the interaction of a rotating disk with a twisted flow is limited to 
[5, 6]. The authors of [5] theoretically examined the turbulent boundary layer formed on 
a disk rotating at an angular velocity ~ and interacting with a gas flow which was itself 
rotating as a solid. A theoretical and experimental study was made in [6] of the laminar 
boundary layer on the rotating end wall of a swirl chamber. The angular velocity of the 
end was fixed, while the gas rotated in accordance with the law governing a free vortex. 

In actual swirl chambers with an outlet containing a diaphragm, the rotation of the 
gas takes place in accordance with a complex law. As a first approximation, the flow out- 
side the outlet hole is assumed to be a potential flow in which the circulation F = v0r = 
const, where v 0 is the circumferential component of velocity in the flow core. As was 
shown in [4, 7], such a law of flow rotation is observed with a:change in the radius from 
the lateral wall of the chamber R to r* (r* determines the radius value where all of the 
gas enters into boundary layers on the end plates and travels through them into the region 
of the outlet hole). The rotation of a gas in a swirl chamber or tube not provided with 
a diaphragm occurs in accordance with the law of quasi-solid rotation at an angular velocity 

= v0/r = const. 

Rotating end plates can be used in a number of vortex-type processing units to improve 
their efficiency. In these cases, the circumferential velocity of the flow decreases with 
approach toward the end wall. The velocity decreases not to zero, but to the linear velocity 
of rotation of the end at the given point. This alleviates the imbalance of centrifugal forces 
in the end boundary layer and preserves the radial pressure gradient in it, which leads 
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to a reduction in the end radial flow and displacement of the value of r* toward the axis 
of the chamber. 

I. Integral Momentum Relation for an End Boundary Layer. Friction Law. Here, within 
the framework of boundary-layer theory, we will examine a turbulent boundary layer on the 
flat rotating end of a swirl chamber. The gas above the surface rotates according to the 
law 

vo = v c ( r / R )  - m  (i.i) 

(v  c i s  t h e  c i r c u m f e r e n t i a l  v e l o c i t y  a t  t h e  s i d e  w a l l  o f  t h e  c h a m b e r ) .  We h a v e  q u a s i - s o l i d  r o  ~ 
t a t i o n  o f  t h e  g a s  a t  m = - 1 ,  w h i l e  a t  m = 1 t h e  s i t u a t i o n  c o r r e s p o n d s  t o  a p o t e n t i a l  law 
o f  r o t a t i o n .  The p r e s e n c e  o f  t h e  c y l i n d r i c a l  s i d e  w a l l  u n d o u b t e d l y  h a s  an e f f e c t  on t h e  
a e r o d y n a m i c s  o f  t h e  end l a y e r  and t h e  chamber  a s  a w h o l e .  However ,  i t  i s  a s sumed  t h a t  
t h i s  o c c u r s  i n  a n a r r o w  r e g i o n  n e a r  t h e  w a l l ,  and t h i s  zone  i s  n o t  e x a m i n e d  h e r e .  

I n  t h e  s t u d y  o f  t u r b u l e n t  r o t a t i n g  b o u n d a r y  l a y e r s  i n  s w i r l  chamber s  w i t h  a s t a t i o n a r y  
e n d ,  t h e  p r o f i l e  o f  c i r c u m f e r e n t i a l  v e l o c i t y  i s  d e s c r i b e d  by t h e  e x p o n e n t i a l  r e l a t i o n  v l /  
v0 = ( z / 6 1 )  n ,  n = 1 / 7 .  I t  h a s  been  s u g g e s t e d  [1 ,  2] t h a t  t h e  p r o f i l e  n e a r  a d i s k  r o t a t i n g  
i n  a s t a t i o n a r y  vo lume be d e s c r i b e d  by t h e  r e l a t i o n  v 2 / ~ r  = 1 -- ( z / 6 2 )  n .  H e r e ,  61 
and 62 a r e  t h e  t h i c k n e s s e s  o f  t h e  c o r r e s p o n d i n g  b o u n d a r y  l a y e r s .  Assuming  t h a t  t h e  b o u n d a r y  
l a y e r  fo rmed  w i t h  t h e  j o i n t  r o t a t i o n  o f  t h e  f l o w  and d i s k  h a s  a t h i c k n e s s  6 i d e n t i c a l  w i t h  
61 and 62,  we f i n d  t h e  p r o f i l e  o f  c i r c u m f e r e n t i a l  v e l o c i t y  i n  t h e  fo rm 

o = v i+v2 =v0~ n n L~r(l-~n)(~ =z/6). (1.2) 

Introducing th~ dimensionless circumferential velocity in the coordinate system connected 
with the disk v = (v - Sr)/(v0 - ~r), in accordance with (1.2) we obtain 

~=$~. (1.3) 

To approximate the radial component of velocity, we will use the approach proposed 
in [7]. The boundary layer is subdivided into two zones - the wall part 0 < z < 6m, governed 
by the laws which govern boundary turbulence; the jet zone 6 m < z < 6, where jet mixing pro- 
cesses predominate (6 m (Fig. la) corresponds to the maximum of radial velocity in the boundary 
layer). The profiles of radial velocity in these zones can be respectively described by 
an exponential relation and the Schlichting formula 

u = U/u  m = ( z / 6 m )  n for O < z <  ~m, ( 1 . 4 )  

(U - -  Uo) / (um - -  U0) = [1 - -  (z i /b l )a /2]  2 for 6m < z < 6, 

where u0 is the radial velocity in the flow core; u m is the maximum value of radial velocity; 
z z = z - 6m; b I = 6 - 5m~ 

Figure la schematically depicts diagrams of the circumferential and radial components 
of gas velocity in the end boundary layer in the case where a forced vortex exists above 
the:layer. Here, we introduce the parameter of the end twist S = ~R/vc, characterizing the 
ratio of the linear circumferential velocity of the end to the circumferential velocity 
of the flow at the side wall of the chamber. In Fig. !a, S = ~/m > i, and the end radial 
flow is directed toward the periphery of the chamber. It is evident that the radial velocity 
in the boundary layer changes direction at S < i. 

Figure Ib illustrates the flow pattern on an end rotating in a swirl chamber with 
a diaphragm. However, this is not the only flow scheme possible. One of three patterns 
will be formed (Fig. 2), depending on the speed of rotation of the end in the boundary layer: 
i) at 0 < S ! i, the circumferential velocity of the end ~r is less than the circumferential 
velocity of the flow v 0 over the entire radius of the chamber, and the radial gas flow in 
the_boundary layer is directed toward the chamber axis; 2) with an increase in S from 1 
to r[ 2, determined from the condition of equality of the circumferential velocities of the 
end and the gas flow at the border of the outlet hole ~r z = vc(R/rl) , the boundary layer has 
two regions separated by the value of the radius r s (Fig. ib). At r > rs, the gas located near 
the end acquires a circumferential velocity greater than the velocity in the flow core and 
is thrown to the periphery of the chamber. Conversely, in the internal region (r < rs) , the 
rotation of the gas in the boundary layer is slowed and it moves toward the chamber axis; 
3) more developed twisting of the end (S > 3[ 2 ) leads to a situation whereby the end wall 
rotates faster than the gas, and the latter will be thrown toward the end walls of the chamber 
over its entire surface. 
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Fig.l 

2- t [ ,<S..<~I ~ ~  ~''~ 

Fig. 2 

We will write the equations of motion and continuity for the end boundary layer in 
a cylindrical coordinate system [i]: 

ou ou v 2 I op I o'Gz ( 1  5 )  
u ~-; + w ~-f - - 7 =  O or + -~" -gF ; 

Ov Ov uv t OT~. ( 1 . 6 )  
u'5-7 + w'~z + r O Oz ' 

Op/Oz = O, Ou/Or -~ u/r @ Ow/Oz = O. ( 1 . 7 )  

Here, ~rz, and Tcz are components of the tensor of the shear stresses, equal to the sum of 
the viscous and turbulent components; u, v, and w are the radial, tangential, and axial 
components of velocity. Integrating (1.6) over the thickness of the end boundary layer 
with the use of continuity equation (1.7), after some simple transformations we obtain an 
integral equation to describe the conservation of angular momentum 

"" [§ d Re m ** { I 2~R t 
+ R %  r W" + - -  X 

v o - -  t)rR v o - -  ~TR 

x + v 

(1.8) 

Integration was done with the boundary conditions 

z=0: u=w=0, v=Qr,%~=(~)w, 

z = 6 :  u = u o = O ,  w = O ,  v = v o ,  ~r = 0 .  

Here, we examined the case when the radial component of velocity in the core of the 
flow u 0 might be less than the circumferential velocity: u 0 << v 0. In Eq. (1.8), we intro- 
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6 
duced t h e  f o l l o w i n g  n o t a t i o n :  6~ = j  u ( l - - ~ ) d z  i s  t h e  momentum t h i c k n e s s ;  tle~*=umg**/v; W 

6 0 
= uudz/6$ ; r = r / R  i s  t h e  d i m e n s i o n l e s s  r a d i u s .  Taking ( 1 . 1 )  f o r  t h e  law of  change in  t h e  

0 

c i r c u m f e r e n t i a l  component o f  v e l o c i t y  o u t s i d e  t h e  boundary  l a y e r  and i n t r o d u c i n g  t h e  param- 
e t e r  S, we rewrite Eq. (1.8): 

dHe** Re;*{ S2@W(I __m) I c]+ umR 
d-----~-+--~-- [t --  W (l --  m)] --  7-=(~;5~$J  = 2 v ( 1 . 9 )  

(cj~/2 = (t~)~/[pUm(V o --9.rR)] is the friction coefficient in the circumferential direction). 

To solve Eq. (1.9), we need to know the change in u m over the radius of the end and 
the connection between the friction coefficient c/~/2 and the integral parameters of the 
boundary layer. To find these relations, we will use the method in [4, 7]. The latter 
provides good agreement with the experimental data for a stationary end. 

To determine the dependence of u m on the radius of the end, we write Eq. (1.5) with 
z = 6m, having set (3Xrz/SZ)z=6m § 0 in a first approximation: 

2 

a~ ~ ~ @ (i. I0) 

Here ,  v m i s  t h e  v a l u e  o f  c i r c u m f e r e n t i a l  v e l o c i t y  d e t e r m i n e d  from Eqs. ( 1 . 1 )  and ( 1 . 2 )  f o r  
z = 6m: 

v m = v c r  ~ m + f ~ R ( i - - ~ % ) .  (i.li) 

Assuming that v~/r >> u0~u0/~r in severely swirled flows and assuming that the flow is for 
the most part inviscid with a profile of circumferential velocity which is constant along 
z, we use (i.6) to write the following for z > 5 

2 
auo Vo ~,, vo I ap (i. 12) 

U~ O-r r r P Or 

Equating the left sides of Eqs. (i.i0) and (1.12) and having inserted (i.i) and (i.ii) 
into them, with allowance for u 0 << v c we obtain the following after integration 

+ 0s}<m+'] 2} + c .  d~ 
vc]  

We agree to consider motion of the radial component of velocity toward the chamber axis 
to be the positive direction. The constant of integration C l in (1.13) is determined below 
in an examination of specific cases of interaction of a flow and an end wall on the basis 
of the corresponding boundary conditions. 

In accordance with [7], we take Sm = 5m/6 = 0.15. The use of a constant value of 
Sm appreciably simplifies the calculations: it is no longer necessary to solve an integral 
relation for the radial direction. The numerical values of the coefficients used in inte- 
gral relation (1.9) and later calculations, determined through ~m, are equal to [7]: 

6 

5+ =5~/6=0.094t, W=4.46, C= J~dz/5$ =5.462. (1.14) 
0 

We will examine flow in the coordinate system connected with the rotating end. We 
will assume that the laws governing friction and the distribution of the shear-stress com- 
ponents in this system correspond to the case of interaction of a vortical flow with a sta- 
tionary end. Then, using the conclusion reached in [7], we write the expression for the 
coefficient of friction in the circumferential direction 

cf~ (~z)w = ~ ~312s ( + tg2 a) 8z8 
- 2 - =  PUm(Vo - ~ ; R )  (Re; , ) - , /~  i tg 2= , ( 1 . i 5 )  

where B/2 : 0.0128. It is evident that the friction coefficient ~/2 is connected with 
ths parameter S through the angle of twist of the flow in the end boundary layer tan ~ = 
f(r, S). In accordance with (1.3) and (1.4), in the chosen coordinate system the angle 
of twist in the wall part (0 < z < 5m) is constant and is determined by the expression 
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tg  ~ = u/(v - -  ~r)  = ~yTu ,~ l (vo  - -  ~~R) .  (i.i6) 

The ratio of the radial and circumferential components of the shear stresses is also determined 
by Eq. (1.16) and changes as follows for a law of change of circumferential velocity over 
the radius in the form (I.i): 

t g  ~ = ( ~ = ) ~ I ( * + , ) =  = - -  = 
Ve r - m  -- S7" (1.17) 

Thus, the resulting expressions for u m (1.13), cf/2 (1.15), and tan ~ (1.17) make it 
possible to solve Eqs. (1.9) for any degree of twist of the end S and with an arbitrarily 
assigned law of gas rotation. 

2. Solution of the Integral Relat.ion for Quasi-Soil d Rotation of the Flow. 
rotating in accordance with the law for a solid (m = -I), Eq. (1.9) has the form 

For a flow 

a7 + I -- 2 3S e s+ ~/~ (2. i ) 
- -  i =--T ~" 

We will restrict ourselves to 
the velocity of the_disk (S > i). A 
boundary condition r = 0, u m = 0, we 

Um/U C 

Having inserted (2.2) into (i. 

tg~ 

It is evident from (2.3) that 
accordance with the solid law, 
resulting expression into Eq. 
for (2.2) we integrate Eq. (2. 

examining a flow having an angular velocity which is less than 
With the diagram of such a flow is shown in Fig. la. 

find the following from (1.13) 

- ~ I [ s  - ; ~  ( s  - ~ ) ] ~  _ ~ ]o,~. 

7), we obtain the following for tan 

= - { [ s  - t ~  ~ ( s  - ~) ]~  - ~ } o , ~ / [ ~  (~ _ s ) ] .  

(2.2) 

( 2 . 3 )  

in the case of rotation of the gas above a rotating disk in 
tan ~ does not change over the radius. Having inserted the 
(1.15) for the friction coefficient eft/2, with allowance 
i) with the boundary condition r = 0, Re$*=0: 

Here, v c = mR; A(S) is a quantity which depends on the degree of twist S: 

{ --~-B ~.-a/2s [(t + tg2~z)ltg2 ~z]a/s tt,~ - -  .sin - -  - -  / t.25 2 =m / r e  ~1/7(S t)]2 t]o, ~ o,s 

A ( S )  = 2 + 1.2~ (t  - -  2 ~  - -  a s ) / ( t  - -  s )  

(2.4) 

The value of Re~* , together with the relation for the maximum of radial velocity Um, makes it 
possible to determine all of the geometric and flow-rate parameters of the boundary layer. 
Thus, the volumetric rate of flow of the gas transported by the boundary layer in the radial 
direction can be found from the expression 

6 

Q t =  2 a r  = 2 a r C  ** I ~ R ~ - I  

0 

(the coefficient C was obtained in (1.14)). In [5], the rate of flow through the boundary 
layer Qf was expressed by the dimensionless complex q = Qt(~r2/n)~ Reducing Eq. 
(2.5) to this form with the use of (2.4), we write q = 2~A(S)S-~ 

In such notation, the rate of flow through the boundary layer is determined only by 
the degree of twist of the end S. Figure 3 shows estimates obtained as a function of S 
(curve i). At S = i, the gas and the disk rotate as one, and there is no boundary layer 
on the disk (q = 0). In the other limiting case (I/S + 0), we have rotation of the disk 
in a stationary volume and a maximum rate of flow through the boundary layer. Curve 2 shows 
the results calculated in [5]. It is evident that the solutions are in agreement. 

3. Solution:of the Integral Relation in the Interaction O f a Rotating End with a Free 
Vortex (m = I). Fundamentally different flow patterns may develop in the boundary layer, 
depending on the parameter S. First we will examine slight rotation of the end (0<S ~i). 
The boundary layer begins to form near the side wall of the chamber. Thus, in integrating 
(1.13), we adopt the boundary condition u m = 0 for r = i. Also assuming that u c << Vc, as a 
result of integration we have 
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~ / ~ =  {(t - ~)2J7(7-~- ~) + s [ 4 ~ ' ( ~  - ~C) ~ 7 -  s(t_~)~(t_~,)]}o.~. (31) 

With values of the end rotation parameter within the range 1 < S ! r[ 2, formation 
of the boundary layer begins not near the side wall, but at the periphery of the radius 
r s. This is determined from the condition ~r s = v 0 (Fig. ib). The value of the radius ~s = 
S -~ found from the given equality is the boundary condition in the solution of the equation 
for the maximum of radial velocity (1.13) and the integral momentum relation, i.e., with 
= S -~ um = 0, Re~* = 0. Gas begins to flo~ fro_m the periphery of this radius in opposite 

directions, forming two boundary layers: at r < rs, the gas moves toward the chamber axis; at 
r > rs, the gas moves toward the side wall of the Chamber. We find from (1.13) that 

Um/Uc= _____ {] (1 - -  ~m) 2/7 (~--2 __ S )  + S [4~1~7 (1 - -  ~ 7 )  1 .  (}sO,5) __ ( 3 . 2 )  

- s (1 - ~ C )  2 ( s  - 1  _ 7~)]  [ }0,5. 

The s i g n  in  t h e  r i g h t  s i d e  o f  Eq. ( 3 . 2 )  i s  d e t e r m i n e d  in  a c c o r d a n c e  w i t h  t h e  chosen  p o s i t i v e  
direction of Um: at r < rs, u m is positive; at r > rs, it is negative. Inserting (3.1) and 
(3.2) into Eq. (1.17), we obtain the corresponding relations for tan ~. This leaves one 
unknown, ~e$* , in integral relation (1.9): 

(Hew) ___ = *' (3.3) 
+ - 7 -  \ ~ 7  z - tg2~ : �9 

The solution of Eq. (3.3) by the Runge-Kutta method on a computer gave us the characteristics 
of the boundary layer: the momentum thickness 6~ , the flow rate Qt, the friction coeffi- 
cient, etc. 
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Figure 4 shows the change in the dimensionless momentum thickness over the radius of 
the end r for different values of the end twist parameter S. It is evident that twisting 
of the end reduces the thickness of the boundary layer. For S > i, the bou_ndary layer begins 
to grow in both directions from the periphery of the corresponding radius r s. Meanwhile, the 
thicknesses of these boundary layers are of the same order of magnitude. 

Figure 5 shows the change in the complex QtRo Re~ "2 over the radius of the chamber. 
Here, Qt = Qt/Q is the relative rate of flow of the gas through the end boundary layer; 
Ro = Q/vc R2 is the Rossby number, characterizing the intensity of swirling of the gas at 
the chamber inlet; Re c = VcR/V is the Reynolds number at the inlet. Straight line 1 char- 
acterizes the ~ase when all of the gas entering the chamber is concentrated in the boundary 
layers, i.e., Qt = 0.5Q. The calculations were performed for Re c = 1.4.105 and Ro = 0.085. 
Curve 2 is the result of calculation of the rate of flow through the end boundary layer 
for a stationary end (S = 0). Lines 1 and 2 intersect at r = r* = 0.7. The experimental 
points shown from [7] also correspond to flow in a chamber with a stationary end. It can 
be seen that these results agree with the calculated results as well. Line 3 shows results 
calculated for S = i. In this case, the intersection with line 1 occurs at r* = 0.25. Thus, 
through flow occurs over most of the chamber volume within a wide range of values. The bound- 
ary layer in the case S = 1 transports roughly half as much fluid and becomes half as thick 
(Fig. 4) as in the case of a stationary end. 

Let us analyze the results of calculations for the range of values of the end rota- 
tion parameter 1 < S ~ r~ 2, which are shown in Fig. 5_by curves 4 and 5 for S = 2 and 6, 
respectively. It is evident that in the region T < rs, flow rate through the boundary layer 
toward the chamber axis decreases with an increase in S. In the region r > r s, the fraction 
of gas thrown toward the side wall increases. The thickness of the boundary layer behaves 
in a similar manner (increasing for S = 2 and 6, Fig. 4). The gas driven toward the peri- 
phery of the end should undoubtedly return to the main flow in the chamber. This will in 
turn lead to an increase.in radial velocity u 0. Gas begins to be recirculated between the 
main flow and the boundary layer, with the fraction of recirculated gas increasing as S 
increases. 
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